

1) Identify critical points: Vf= 0 (or DNE) 2x = 0 0 = 0 So the critical pts are all pts of the form (0,b), i.e. the y-axis. E Classify them:  $det H_{f}(0,b) = def \begin{bmatrix} f_{xx}(0,b) & f_{xy}(0,b) \\ f_{yx}(0,b) & f_{yy}(0,b) \end{bmatrix}$  $= det \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = 0.$ 



To figure out whether (a,b) is a absolute min: "Is if the that fix , y is always at least as big as fla, bl? In our example:  $f(0,b) = 0^2 = 0$ .  $f(x,y) = x^2 \ge 0$  so  $\chi ES$ (An absolute min is automatically also a local min.) To figure out whether (a,b) is a local min: "Can I draw a circle around (a,b) so that, within that circle, fix, y1 is always at least as big as fra, b)?"