
(1) Identity critical points:

$$
\left\{\begin{array}{l}
\quad \nabla f=\overrightarrow{0} \quad \text { (or } D N E) \\
0=0
\end{array}\right.
$$

So the critical pts are all pts of the form $(0, b)$, i.e. the y-axis.
(2) Clussify them:

$$
\begin{aligned}
& \operatorname{det} H_{f}(0, b)=\operatorname{def}\left[\begin{array}{ll}
f_{x x}(0, b) & f_{x y}(0, b) \\
f_{y x}(0, b) & f_{y y}(0, b)
\end{array}\right] \\
& D=\operatorname{det}\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=0 .
\end{aligned}
$$

$D=0 \Rightarrow$ Ind deriv test is inconclusive i

Need to resort to octhoc analysis of f :

To figure out whether (a, b) is a absolute min:
"Is if the that $f(x, y)$ is always at least as big as $f(a, b)$?
In our example: $f(0, b)=0^{2}=0$.

$$
f(x, y)=x^{2} \geqslant 0 \text { so YES. }
$$

(An absolute min is automatically also a local min.)
To figure out whether (a, b) is a local min:
"Can I draw a circle around (a, b) so that, within that circle, $f(x, y)$ is always at least as big as $f(a, b)$?"

